« Vrati se
Let (a_n)^{\infty}_{n=1} be a sequence of integers with a_{n} < a_{n+1}, \quad \forall n \geq 1. For all quadruple (i,j,k,l) of indices such that 1 \leq i < j \leq k < l and i + l = j + k we have the inequality a_{i} + a_{l} > a_{j} + a_{k}. Determine the least possible value of a_{2008}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2518skakavac 2012 trece kolo ss3 10
1958IMO Shortlist 1997 problem 20
1844IMO Shortlist 1992 problem 170
1841IMO Shortlist 1992 problem 140
1349IMO Shortlist 1969 problem 190
1214IMO Shortlist 1966 problem 311