« Vrati se
Let k and m, with k > m, be positive integers such that the number km(k^2 - m^2) is divisible by k^3 - m^3. Prove that (k - m)^3 > 3km.

Slični zadaci

Odredi sve četveroznamenkaste brojeve \overline{abcd} takve da vrijedi  7 \mid \overline{abcd} \text{,} \quad 7 \mid \overline{dcba} \text{,} \quad 37 \mid \overline{abcd} - \overline{dcba} \text{.}
Determine all integers k\ge 2 such that for all pairs (m,\,n) of different positive integers not greater than k, the number n^{n-1}-m^{m-1} is not divisible by k.
Dano je n prirodnih brojeva, relativno prostih s n. Dokaži da među njima postoji njih nekoliko čiji je umnožak umanjen za 1 djeljiv s n.
Let m be a positive odd integer, m > 2. Find the smallest positive integer n such that 2^{1989} divides m^n - 1.
Prove the inequality

a.) \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left(a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) ,

where k\geq 1 is a natural number and a_{1}, a_{2}, ..., a_{k} are arbitrary real numbers.

b.) Using the inequality (1), show that if the real numbers a_{1}, a_{2}, ..., a_{n} satisfy the inequality

a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) },

then all of these numbers a_{1}, a_{2}, \ldots, a_{n} are non-negative.
Let a_1, a_2, \ldots, a_n be positive real numbers. Prove the inequality
\binom n2 \sum_{i<j} \frac{1}{a_ia_j} \geq 4 \left( \sum_{i<j} \frac{1}{a_i+a_j} \right)^2