« Vrati se
Za sustav novčanica 1 = n_1 < n_2, ... < n_k kažemo da je dobar ako "greedy" postupak vraćanja novca uvijek rezultira s najmanjim brojem isplaćenih novčanica. Dokažite da je sustav 1 < b < a dobar ako i samo ako postoji k \in \mathbb{N} takav da je \lceil\frac{a}{k}\rceil = b.
Napomena: U greedy postupku u svakom koraku vraćamo najviše moguće najvećih mogućih novčanica. Nadalje, \lceil x\rceil označava najmanji cijeli broj veći od (ili jednak) x.

Slični zadaci

Let a_{ij} (with the indices i and j from the set \left\{1,\ 2,\ 3\right\}) be real numbers such that

a_{ij}>0 for i = j;
a_{ij}<0 for i\neq j.

Prove the existence of positive real numbers c_{1}, c_{2}, c_{3} such that the numbers

a_{11}c_{1}+a_{12}c_{2}+a_{13}c_{3},
a_{21}c_{1}+a_{22}c_{2}+a_{23}c_{3},
a_{31}c_{1}+a_{32}c_{2}+a_{33}c_{3}

are either all negative, or all zero, or all positive.
The numbers from 1 to n^2 are randomly arranged in the cells of a n \times n square (n \geq 2). For any pair of numbers situated on the same row or on the same column the ratio of the greater number to the smaller number is calculated. Let us call the characteristic of the arrangement the smallest of these n^2\left(n-1\right) fractions. What is the highest possible value of the characteristic ?
Let r_{1},r_{2},\ldots ,r_{n} be real numbers greater than or equal to 1. Prove that

\frac{1}{r_{1} + 1} + \frac{1}{r_{2} + 1} + \cdots +\frac{1}{r_{n}+1} \geq \frac{n}{ \sqrt[n]{r_{1}r_{2} \cdots r_{n}}+1}.
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Show that there exists a finite set A \subset \mathbb{R}^2 such that for every X \in A there are points Y_1, Y_2, \ldots, Y_{1993} in A such that the distance between X and Y_i is equal to 1, for every i.
na jednom turniru sudjelovalo je n kosarkaskih ekipa. svaka ekipa odigrala je sa svakom drugom tocno jednu utakmicu. nerijesenih ishoda nije bilo. ako na kraju turnira i-ita ekipa ima x_i pobjeda i y_i poraza (i = 1, 2, \dots, n) dokazite da je
x_1^2 + x_2^2 + \dots + x_n^2 = y_1^2 + y_2^2 + \dots + y_n^2