Let
denote the set of all positive real numbers. Find all functions
such that
holds for all
.
%V0
Let $\mathbb{R} ^{+}$ denote the set of all positive real numbers. Find all functions $\mathbb{R} ^{+} \to \mathbb{R} ^{+}$ such that
$$f(x+f(y)) = yf(xy+1)$$
holds for all $x, y \in \mathbb{R} ^{+}$.