Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 2012 problem N6
2012
shortlist
tb
Let
and
be positive integers. If
is divisible by
for every positive integer
, prove that
.
%V0 Let $x$ and $y$ be positive integers. If $x^{2^n}-1$ is divisible by $2^ny+1$ for every positive integer $n$, prove that $x=1$.
Slični zadaci