In the plane, red points and blue points are marked so that no three of the marked points are collinear. One needs to draw lines not passing through the marked points and dividing the plane into several regions. The goal is to do it in such a way that no region contains points of both colors.
Find the minimal value of such that the goal is attainable for every possible configuration of points.
Find the minimal value of such that the goal is attainable for every possible configuration of points.