« Vrati se

Let z_0 < z_1 < z_2 < \cdots be an infinite sequence of positive integers. Prove that there exists a unique integer n \geq 1 such that z_n < \frac{z_0 + z_1 + \cdots + z_n}{n} \leq z_{n+1} \text{.}

(Austria)

Slični zadaci