Let $n \geq 2$ be an integer, and let $A_n$ be the set
$$ A_n = \{ 2^n - 2^k \, | \, k \in \mathbb{Z}, 0 \leq k < n \} \text{.} $$
Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$.
\begin{flushright}\emph{(Serbia)}\end{flushright}