« Vrati se

For every real number x, let \lVert x \rVert denote the distance between x and the nearest integer. Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive integer k satisfying \left\lVert \frac{a}{p^k} \right\rVert + \
  \left\lVert \frac{b}{p^k} \right\rVert + \
  \left\lVert \frac{a + b}{p^k} \right\rVert = 1 \text{.}

(Hungary)

Slični zadaci