*Vrlo* jaka nejednakost


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 5,0
Dodao: IvanSincic
4. travnja 2018.
LaTeX PDF
Neka su a,b,c pozitivni realni brojevi takvi da vrijedi \displaystyle{\frac{a^2b+bc^2}{a+c} + \frac{b^2c+ca^2}{b+a} + \frac{c^2a+ab^2}{c+b} = \frac{1}{16}}.
Dokaži da vrijedi:
(\sum_{cyc} \frac{20a^2b+12bc^2}{a+c})(\sum_{cyc} \frac{20bc^2+12a^2b}{c+a}) \geq 1



Komentari:

predobar zadatak

Zadnja promjena: ivanvojvodic, 19. svibnja 2018. 17:12