Triangle has circumcircle
and circumcenter
. A circle
with center
intersects the segment
at points
and
, such that
,
,
, and
are all different and lie on line
in this order. Let
and
be the points of intersection of
and
, such that
,
,
,
, and
lie on
in this order. Let
be the second point of intersection of the circumcircle of triangle
and the segment
. Let
be the second point of intersection of the circumcircle of triangle
and the segment
.
Suppose that the lines and
are different and intersect at the point
. Prove that
lies on the line
.
(Greece)