Prijateljice Anica i Neda igraju igru tako da u svakom potezu, nakon što jedna od njih kaže broj

, druga mora reći neki broj oblika

pri čemu su

i

prirodni brojevi za koje vrijedi

. Igra se zatim nastavlja na isti način, od upravo izrečenog broja. S kojim je sve brojevima mogla započeti igra ako je nakon određenog vremena jedna od njih rekla broj

?
%V0
Prijateljice Anica i Neda igraju igru tako da u svakom potezu, nakon što jedna od njih kaže broj $n$, druga mora reći neki broj oblika $a\cdot b$ pri čemu su $a$ i $b$ prirodni brojevi za koje vrijedi $a+b=n$. Igra se zatim nastavlja na isti način, od upravo izrečenog broja. S kojim je sve brojevima mogla započeti igra ako je nakon određenog vremena jedna od njih rekla broj $2011$?