« Vrati se

Let n, m, k and l be positive integers with n \neq 1 such that n^k + mn^l + 1 divides n^{k+l} - 1. Prove that

\begin{itemize}
\item $m = 1$ and $l = 2k$; or
\item $l|k$ and $m = \frac{n^{k-l}-1}{n^l-1}$.
\end{itemize}

Slični zadaci