Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
Junior Balkan MO 1998 - Problem 1
1998
JBMO
alg
potpuni
tb
znamenke
Prove that the number
(which has 1997 of
-s and 1998 of
-s) is a perfect square.
Prove that the number $\underbrace{111\ldots 11}_{1997}\underbrace{22\ldots 22}_{1998}5$ (which has 1997 of $1$-s and 1998 of $2$-s) is a perfect square.
Slični zadaci