Junior Balkan MO 1999 - Problem 4


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 0,0
Dodao/la: arhiva
27. listopada 2023.
LaTeX PDF

Let ABC be a triangle with |AB|=|AC|. Also, let D\in \overline{BC} be a point such that |BC|>|BD|>|DC|>0, and let \mathcal{C}_1,\mathcal{C}_2 be the circumcircles of the triangles ABD and ADC respectively. Let \overline{BB'} and \overline{CC'} be diameters in the two circles, and let M be the midpoint of \overline{B'C'}. Prove that the area of the triangle MBC is constant (i.e. it does not depend on the choice of the point D).

Izvor: Juniorska balkanska matematička olimpijada 1999.