« Vrati se
Riješite jednadžbu \frac{1}{2^{2x}+3} \ge \frac{1}{2^{x+2}-1}.

Slični zadaci

Riješite nejednadžbu 
2\cdot 125^x-3\cdot 50^x-9\cdot 20^x+10\cdot 8^x\le 0.
Riješite nejednadžbu 
x^{1+\log _ax}>a^2x, \quad a>0, \quad a \neq 1 \text{.}
Odredi sve realne brojeve a takve da, za svaki realan broj x, vrijedi 
\dfrac{x}{x^2 + 2 x + 3} > \dfrac{x + a}{1+x+x^2}.
Za koje vrijednosti broja m vrijedi 
-3< \frac{x^2-mx+1}{x^2+x+1}<3
za svaki realni broj x?
U ovisnosti o pozitivnom realnom parametru p riješi nejednadžbu 
\dfrac{x}{p}-\dfrac{2p}{x}<2.
Dokažite da je x^8-x^5+x^2-x+1>0 za svaki realan broj x.