Četiri prirodna broja
,
,
,
zadovoljavaju jednakosti
Pokaži da postoji pravokutni trokut površine
kojem su duljine svih stranica prirodni brojevi.
%V0
Četiri prirodna broja $a$, $b$, $c$, $d$ zadovoljavaju jednakosti $$ a+b=c \text{,} \qquad\qquad a+d=2c \text{.} $$ Pokaži da postoji pravokutni trokut površine $abcd$ kojem su duljine svih stranica prirodni brojevi.