Točno
13. ožujka 2018. 22:37 (6 godine, 11 mjeseci)
The numbers
,
,
,
(
) are written on a blackboard. In each step we erase an integer which is the arithmetic mean of two different numbers which are still left on the blackboard. We make such steps until no further integer can be erased. Let
be the smallest possible number of integers left on the blackboard at the end. Find
for every
.








Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.
Kliknite ovdje kako biste prikazali rješenje.
Tvrdimo da je
za sve potencije broja 2 a da je
za sve ostale brojeve
Jasno da je
jer za
i
ne postoje brojevi koji čine tu artimetičku sredinu, pa je tako dovoljna konstrukcija za potencije broja 2 da bi na kraju
To činimo indukcijom po
gdje je 

je
trivijalna
da za neko
vrijedi da 
od danih
odaberemo interval
te pretpostavkom svedemo na brojeve
slično tako
reduciramo u
.
Sada imamo
broja
gdje je
artimetička sredina
i
pa nam ga je dopušteno izbaciti. Tvrdnja je time dokazana.
For the sake of contradiction, pretpostavimo da je
i za brojeve koje nisu potencije broja
. U tom slučaju sa sigurnošću možemo tvrditi da su
zadnji brojevi na ploči. Uzmimo neki prosti
takav da
dijeli
( takav postoji jer smo pretpostavili da
nije potencija broja
) uočimo da je artimetička sredina
i
i dalje djeljiva sa
odnosno kako u artimetičkoj sredini samo dijelimo sa dvojkom zajednički djelitelj dva broja će ostati
, tako bi backtrackingom dobili niz u kojem su svi članovi djeljivi sa
što dovodi do kontradikcije jer to ne zadovoljava početne uslove zadanog niza. Dakle
za ostale
.
Kao konstrukciju posmatramo broj
u obliku
gdje je
najveći pribrojnik koji je ujedno i potencija broja 2, uočimo da je
pa je u intervalu
moguće obrisati članove tako da ostanu samo
. Međutim znamo da
možemo reducirati u
Tako zadani niz od
brojeva možemo reducirati u
elementa
. Time je početna tvrdnja dokazana.


Jasno da je




To činimo indukcijom po






















For the sake of contradiction, pretpostavimo da je















Kao konstrukciju posmatramo broj










