Točno
29. rujna 2024. 19:29 (1 mjesec, 3 tjedna)

Dokaži da za pozitivne realne brojeve a, b, c i d vrijedi \frac{a - b}{b + c} + \frac{b - c}{c + d} + \frac{c - d}{d + a} + \frac{d - a}{a + b} \geq 0 \text{.}

Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.

Ocjene: (2)



Komentari:

Hvala, ispravljeno.

Inače, samo na kraju zamjeni \ge s = u ovoj zadnjoj nejednakosti. \left(\frac{4}{a+b+c+d}\right)(a+b+c+d)=4