Točno
14. travnja 2012. 20:23 (12 godine, 7 mjeseci)
Neka je f \colon \mathbb{R} \to \mathbb{R} kvadratna funkcija f\!\left(x\right) = ax^2+bx+c. Označimo sa D diskriminantu, sa P umnožak, a sa S zbroj njezinih nultočaka. Pokažite da postoji samo jedna funkcija f za koju su a, D, P, S četiri uzastopna cijela broja (u rastućem poretku).
Upozorenje: Ovaj zadatak još niste riješili!
Kliknite ovdje kako biste prikazali rješenje.

Ocjene: (1)