« Vrati se
For what values of the variable x does the following inequality hold: \dfrac{4x^2}{(1-\sqrt{2x+1})^2}<2x+9 \ ?

Slični zadaci

Odredi najveću vrijednost realne konstante \lambda takve da za sve pozitivne realne brojeve u, v, w za koje je u\sqrt{vw} + v\sqrt{wu} + w\sqrt{uv} \geqslant 1 vrijedi nejednakost u + v + w \geqslant \lambda.
Let n \geq 2 be a fixed integer. Find the least constant C such the inequality

\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C \left(\sum_{i}x_{i} \right)^4

holds for any x_{1}, \ldots ,x_{n} \geq 0 (the sum on the left consists of \binom{n}{2} summands). For this constant C, characterize the instances of equality.
(i) If x, y and z are three real numbers, all different from 1, such that xyz = 1, then prove that

\frac {x^{2}}{\left(x - 1\right)^{2}} + \frac {y^{2}}{\left(y - 1\right)^{2}} + \frac {z^{2}}{\left(z - 1\right)^{2}} \geq 1.
(With the \sum sign for cyclic summation, this inequality could be rewritten as \sum \frac {x^{2}}{\left(x - 1\right)^{2}} \geq 1.)

(ii) Prove that equality is achieved for infinitely many triples of rational numbers x, y and z.

Author: Walther Janous, Austria
Neka su a, b i c pozitivni realni brojevi takvi da je abc = 1. Dokažite:
a^2 + b^2 + c^2 \geqslant a + b + c
Dani su brojevi a_1, a_2, \ldots, a_{2012} iz intervala \left[0,1\right]. Dokaži nejednakost:
 \left(1-a_1\right)a_2a_3\cdots a_{2012} + a_1\left(1-a_2\right)a_3 \cdots a_{2012} + \cdots + a_1\cdots a_{2011}\left(1-a_{2012}\right) \leq 1 \text{.}
Za realne brojeve a i b vrijedi a+b = 1, a > 0, b > 0. Dokažite da je
2 < \left(a-\frac{1}{a}\right) \left(b-\frac{1}{b}\right) \leq \frac{9}{4}.