« Vrati se
Neka su j i k prirodni brojevi. Dokažite da nejednakost

\lfloor (j + k)\alpha \rfloor + \lfloor (j + k)\beta \rfloor \geq \lfloor j\alpha \rfloor + \lfloor j\beta \rfloor + \lfloor k(\alpha + \beta) \rfloor
vrijedi za sve realne brojeve \alpha i \beta ako i samo ako je j = k.

( \lfloor x \rfloor je oznaka za najveći cijeli broj koji nije veći od x.)

Slični zadaci

Neka je S = \{k \in \mathbb{N} : a \in \mathbb{N}, a^2|k \Rightarrow a = 1 \} i n \in \mathbb{N}. Dokažite da je

\sum_{k \in S} \left\lfloor \sqrt{\frac{n}{k}} \right\rfloor = n.
( \lfloor x \rfloor je oznaka za najveći cijeli broj koji nije veći od x.)
Dokažite da za svaki prirodan broj n \geq 2 vrijedi ova jednakost

\lfloor \log_{2}{n} \rfloor + \lfloor \log_{3}{n} \rfloor + \ldots + \lfloor \log_{n}{n} \rfloor = \lfloor \sqrt{n} \rfloor + \lfloor \sqrt[3]{n} \rfloor + \ldots + \lfloor \sqrt[n]{n} \rfloor.
( \lfloor x \rfloor je oznaka za najveći cijeli broj koji nije veći od x.)
U polja kvadrata 3 \times 3 treba upisati prirodne brojeve, tako da u svakom retku i svakom stupcu produkt upisanih brojeva bude 270. Na koliko je načina to moguće napraviti?
Neka je P poligon u koordinatnom sustavu u ravnini čija je površina veća od 1. Dokažite da postoje dvije različite točke (x_1,\,y_1) i (x_2,\,y_2) poligona P takve da su x_1 - x_2 i y_1 - y_2 cijeli brojevi.
Nad stranicama \overline{AC} i \overline{BC} šiljastokutnog trokuta ABC s vanjske strane konstruiraju se kvadrat ACXE i CBDY. Dokažite da se pravci AD i BE sijeku na visini iz vrha C trokuta ABC.
Neka je m \geqslant 2 prirodan broj. Koliko rješenja u skupu prirodnih brojeva ima jednadžba \left\lfloor{\vphantom{\frac{x}{m-1}}\frac{x}{m}}\right\rfloor = \left\lfloor{\frac{x}{m-1}}\right\rfloor \text{?}
(\left\lfloor x \right\rfloor je oznaka za najveći cijeli broj koji nije veći od x.)