« Vrati se
Prove the following inequality:
\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i, where x_i > 0, k \in \mathbb{N}, n \in \mathbb{N}.

Slični zadaci

Prove that
\frac{1}{3}n^2 + \frac{1}{2}n + \frac{1}{6} \geq (n!)^{\dfrac{2}{n}},
and let n \geq 1 be an integer. Prove that this inequality is only possible in the case n = 1.
Prove the trigonometric inequality \displaystyle \cos x < 1 - \frac{x^2}{2} + \frac{x^4}{16}, when \displaystyle x \in \left(0, \frac{\pi}{2} \right)\text{.}
Prove that for an arbitrary pair of vectors f and g in the space the inequality
af^2 + bfg +cg^2 \geq 0
holds if and only if the following conditions are fulfilled:
a \geq 0, \quad c \geq 0, \quad 4ac \geq b^2.
Prove that for arbitrary positive numbers the following inequality holds
\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.
Suppose that n \geq 2 and x_1, x_2, \ldots, x_n are real numbers between 0 and 1 (inclusive). Prove that for some index i between 1 and n - 1 the
inequality

x_i (1 - x_{i+1}) \geq \frac{1}{4} x_1 (1 - x_{n})
Let n \geq 2, n \in \mathbb{N} and let p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R} satisfying \frac{1}{2} \leq p \leq 1, 0 \leq a_i, 0 \leq b_i \leq p, i = 1, \ldots, n, and \sum^n_{i=1} a_i = \sum^n_{i=1} b_i. Prove the inequality: \sum^n_{i=1} b_i \prod^n_{j = 1, j \neq i} a_j \leq \frac{p}{(n-1)^{n-1}}.