« Vrati se
(CZS 5) A convex quadrilateral ABCD with sides AB = a, BC = b, CD = c, DA = d and angles \alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD, and \delta = \angle CDA is given. Let s = \frac{a + b + c +d}{2} and P be the area of the quadrilateral. Prove that P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1979IMO Shortlist 1997 problem 230
1400IMO Shortlist 1969 problem 700
1398IMO Shortlist 1969 problem 681
1380IMO Shortlist 1969 problem 500
1357IMO Shortlist 1969 problem 270
1334IMO Shortlist 1969 problem 40