« Vrati se
Consider the two square matrices
A=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &-1&-1 &+1&+1\\ +1 &-1 &-1 &-1 &+1\\ +1 &+1&-1 &+1&-1\end{bmatrix}\quad\text{ and }\quad B=\begin{bmatrix}+1 &+1 &+1&+1 &+1\\+1 &+1 &+1&-1 &-1\\ +1 &+1&-1&+1&-1\\ +1 &-1&-1&+1&+1\\ +1 &-1&+1&-1 &+1\end{bmatrix}

with entries +1 and -1. The following operations will be called elementary:

(1) Changing signs of all numbers in one row;
(2) Changing signs of all numbers in one column;
(3) Interchanging two rows (two rows exchange their positions);
(4) Interchanging two columns.

Prove that the matrix B cannot be obtained from the matrix A using these operations.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1969IMO Shortlist 1997 problem 132
1975IMO Shortlist 1997 problem 192
1982IMO Shortlist 1997 problem 260
2386skakavac 2012 drugo kolo ss2 21
2446MEMO 2011 pojedinačno problem 117
2532skakavac 2013 prvo kolo ss2 23