« Vrati se
Let a_{1}, \ldots, a_{n} be an infinite sequence of strictly positive integers, so that a_{k} < a_{k+1} for any k. Prove that there exists an infinity of terms a_m, which can be written like a_m = x \cdot a_p + y \cdot a_q with x,y strictly positive integers and p \neq q.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1142IMO Shortlist 1959 problem 221
1810IMO Shortlist 1991 problem 120
1825IMO Shortlist 1991 problem 270
1841IMO Shortlist 1992 problem 140
1958IMO Shortlist 1997 problem 20
1973IMO Shortlist 1997 problem 175