« Vrati se
A sequence (u_{n}) is defined by u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for  } n=1,\ldots Prove that for any positive integer n we have [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}}(where {{ Nevaljan tag "x" }} denotes the smallest integer \leq x).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1980IMO Shortlist 1997 problem 240
1579IMO Shortlist 1982 problem 30
1523IMO Shortlist 1978 problem 90
1513IMO Shortlist 1977 problem 151
1183IMO Shortlist 1965 problem 61
1172IMO Shortlist 1963 problem 61