« Vrati se
The sequence f_1, f_2, \cdots, f_n, \cdots of functions is defined for x > 0 recursively by
f_1(x)=x , \quad f_{n+1}(x) = f_n(x) \left(f_n(x) + \frac 1n \right)
Prove that there exists one and only one positive number a such that 0 < f_n(a) < f_{n+1}(a) < 1 for all integers n \geq 1.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1980IMO Shortlist 1997 problem 240
1960IMO Shortlist 1997 problem 42
1733IMO Shortlist 1988 problem 260
1577IMO Shortlist 1982 problem 13
1564IMO Shortlist 1981 problem 71
1214IMO Shortlist 1966 problem 311