Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1988 problem 9
1988
IMO
shortlist
tb
Let
and
be two positive integers such that
divides
. Show that
is a perfect square.
%V0 Let $a$ and $b$ be two positive integers such that $a \cdot b + 1$ divides $a^{2} + b^{2}$. Show that $\frac {a^{2} + b^{2}}{a \cdot b + 1}$ is a perfect square.
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1426
IMO Shortlist 1971 problem 13
1971
IMO
shortlist
tb
0
1462
IMO Shortlist 1974 problem 3
1974
IMO
polinom
shortlist
tb
0
1637
IMO Shortlist 1984 problem 16
1984
IMO
shortlist
tb
1
1704
IMO Shortlist 1987 problem 20
1987
IMO
shortlist
tb
0
1848
IMO Shortlist 1992 problem 21
1992
IMO
shortlist
tb
0
1980
IMO Shortlist 1997 problem 24
1997
IMO
shortlist
0