Školjka
Tečajevi
MetaMath '24
Izbornik
Početna
Arhiva zadataka
Predavanja
Natjecanja
Tečajevi
Registracija
Prijava
Svi zadaci
Rješenja
Traži
Pomoć
O nama
« Vrati se
IMO Shortlist 1991 problem 6
1991
geo
shortlist
is a terahedron:
are the mid points of
Prove that
%V0 $ABCD$ is a terahedron: $AD+BD=AC+BC,$ $BD+CD=BA+CA,$ $CD+AD=CB+AB,$ $M,N,P$ are the mid points of $BC,CA,AB.$ $OA=OB=OC=OD.$ Prove that $\angle MOP = \angle NOP =\angle NOM.$
Slični zadaci
Lista
Tekst
Dva stupca
Zadaci
#
Naslov
Oznake
Rj.
Kvaliteta
Težina
1506
IMO Shortlist 1977 problem 8
1977
geo
shortlist
0
1724
IMO Shortlist 1988 problem 17
1988
geo
shortlist
0
1745
IMO Shortlist 1989 problem 7
1989
geo
shortlist
0
1746
IMO Shortlist 1989 problem 8
1989
geo
shortlist
0
1830
IMO Shortlist 1992 problem 3
1992
geo
shortlist
0
1979
IMO Shortlist 1997 problem 23
1997
geo
shortlist
0