« Vrati se
An odd integer n \ge 3 is said to be nice if and only if there is at least one permutation a_{1}, \cdots, a_{n} of 1, \cdots, n such that the n sums a_{1} - a_{2} + a_{3} - \cdots - a_{n - 1} + a_{n}, a_{2} - a_{3} + a_{3} - \cdots - a_{n} + a_{1}, a_{3} - a_{4} + a_{5} - \cdots - a_{1} + a_{2}, \cdots, a_{n} - a_{1} + a_{2} - \cdots - a_{n - 2} + a_{n - 1} are all positive. Determine the set of all `nice' integers.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1423IMO Shortlist 1971 problem 103
1618IMO Shortlist 1983 problem 220
1827IMO Shortlist 1991 problem 290
1959IMO Shortlist 1997 problem 30
1977IMO Shortlist 1997 problem 210
2428MEMO 2009 ekipno problem 39