« Vrati se
Let n \geq 2, n \in \mathbb{N} and let p, a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R} satisfying \frac{1}{2} \leq p \leq 1, 0 \leq a_i, 0 \leq b_i \leq p, i = 1, \ldots, n, and \sum^n_{i=1} a_i = \sum^n_{i=1} b_i. Prove the inequality: \sum^n_{i=1} b_i \prod^n_{j = 1, j \neq i} a_j \leq \frac{p}{(n-1)^{n-1}}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1424IMO Shortlist 1971 problem 110
1430IMO Shortlist 1971 problem 173
1659IMO Shortlist 1985 problem 181
1723IMO Shortlist 1988 problem 160
1794IMO Shortlist 1990 problem 2414
1822IMO Shortlist 1991 problem 240