« Vrati se
Let a_{0} = 1994 and a_{n + 1} = \frac {a_{n}^{2}}{a_{n} + 1} for each nonnegative integer n. Prove that 1994 - n is the greatest integer less than or equal to a_{n}, 0 \leq n \leq 998

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1849IMO Shortlist 1993 problem A10
1850IMO Shortlist 1993 problem A20
1851IMO Shortlist 1993 problem A315
1852IMO Shortlist 1993 problem A40
1874IMO Shortlist 1993 problem N41
1878IMO Shortlist 1994 problem A41