« Vrati se
Let S be the set of all real numbers strictly greater than −1. Find all functions f: S \to S satisfying the two conditions:

(a) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y in S;

(b) \frac {f(x)}{x} is strictly increasing on each of the two intervals - 1 < x < 0 and 0 < x.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1608IMO Shortlist 1983 problem 122
1795IMO Shortlist 1990 problem 252
1854IMO Shortlist 1993 problem A61
1878IMO Shortlist 1994 problem A41
2096IMO Shortlist 2002 problem A49
2264IMO Shortlist 2008 problem A124