« Vrati se
Find the maximum value of x_{0} for which there exists a sequence x_{0},x_{1}\cdots ,x_{1995} of positive reals with x_{0} = x_{1995}, such that
x_{i - 1} + \frac {2}{x_{i - 1}} = 2x_{i} + \frac {1}{x_{i}},
for all i = 1,\cdots ,1995.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1899IMO Shortlist 1995 problem A122
1913IMO Shortlist 1995 problem NC15
1916IMO Shortlist 1995 problem NC43
1924IMO Shortlist 1995 problem S40
2123IMO Shortlist 2003 problem A42
2340Hrvatska matematička olimpijada 1994 - Drugi dan - Zadatak 23