« Vrati se
Find the maximum value of x_{0} for which there exists a sequence x_{0},x_{1}\cdots ,x_{1995} of positive reals with x_{0} = x_{1995}, such that
x_{i - 1} + \frac {2}{x_{i - 1}} = 2x_{i} + \frac {1}{x_{i}},
for all i = 1,\cdots ,1995.

Slični zadaci

Za svaki prirodan broj n određeni su cijeli brojevi a_n i b_n tako da je
 (1+\sqrt{2})^{2n+1}=a_n+b_n \sqrt{2}.
a) Dokažite da su a_n i b_n neparni za svaki n.
b) Dokažite da je b_n hipotenuza pravokutnog trokuta čije su katete
 \frac{a_n+(-1)^n}{2}, \ \frac{a_n-(-1)^n}{2}.
Let n be a positive integer and let x_1\le x_2\le\cdots\le x_n be real numbers.
Prove that

\left(\sum_{i,j=1}^{n}|x_i-x_j|\right)^2\le\frac{2(n^2-1)}{3}\sum_{i,j=1}^{n}(x_i-x_j)^2.
Show that the equality holds if and only if x_1, \ldots, x_n is an arithmetic sequence.
Suppose that x_1, x_2, x_3, \ldots are positive real numbers for which x^n_n = \sum^{n-1}_{j=0} x^j_n for n = 1, 2, 3, \ldots Prove that \forall n, 2 - \frac{1}{2^{n-1}} \leq x_n < 2 - \frac{1}{2^n}.
Find all x,y and z in positive integer: z + y^{2} + x^{3} = xyz and x = \gcd(y,z).
Let k be a positive integer. Show that there are infinitely many perfect squares of the form n \cdot 2^k - 7 where n is a positive integer.
Let a, b, c be positive real numbers such that abc = 1. Prove that \frac {1}{a^{3}\left(b + c\right)} + \frac {1}{b^{3}\left(c + a\right)} + \frac {1}{c^{3}\left(a + b\right)}\geq \frac {3}{2}.