« Vrati se
Let \mathbb{N} denote the set of all positive integers. Prove that there exists a unique function f: \mathbb{N} \mapsto \mathbb{N} satisfying
f(m + f(n)) = n + f(m + 95)
for all m and n in \mathbb{N}. What is the value of \sum^{19}_{k = 1} f(k)?

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1902IMO Shortlist 1995 problem A40
1916IMO Shortlist 1995 problem NC43
1956IMO Shortlist 1996 problem N50
2261IMO Shortlist 2007 problem N56
2288IMO Shortlist 2008 problem N59
2317IMO Shortlist 2009 problem N57