« Vrati se
Let a > 2 be given, and starting a_0 = 1, a_1 = a define recursively:

a_{n+1} = \left(\frac{a^2_n}{a^2_{n-1}} - 2 \right) \cdot a_n.

Show that for all integers k > 0, we have: \sum^k_{i = 0} \frac{1}{a_i} < \frac12 \cdot (2 + a - \sqrt{a^2-4}).

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2315IMO Shortlist 2009 problem N311
1956IMO Shortlist 1996 problem N50
1930IMO Shortlist 1996 problem A41
1928IMO Shortlist 1996 problem A23
1927IMO Shortlist 1996 problem A114
1874IMO Shortlist 1993 problem N41