« Vrati se
Let a > 2 be given, and starting a_0 = 1, a_1 = a define recursively:

a_{n+1} = \left(\frac{a^2_n}{a^2_{n-1}} - 2 \right) \cdot a_n.

Show that for all integers k > 0, we have: \sum^k_{i = 0} \frac{1}{a_i} < \frac12 \cdot (2 + a - \sqrt{a^2-4}).

Slični zadaci

Let S be the set of all pairs (m,n) of relatively prime positive integers m,n with n even and m < n. For s = (m,n) \in S write n = 2^k \cdot n_o where k, n_0 are positive integers with n_0 odd and define f(s) = (n_0, m + n - n_0). Prove that f is a function from S to S and that for each s = (m,n) \in S, there exists a positive integer t \leq \frac{m+n+1}{4} such that f^t(s) = s, where f^t(s) = \underbrace{ (f \circ f \circ \cdots \circ f) }_{t \text{ times}}(s).

If m+n is a prime number which does not divide 2^k - 1 for k = 1,2, \ldots, m+n-2, prove that the smallest value t which satisfies the above conditions is \left [\frac{m+n+1}{4} \right ] where \left[ x \right] denotes the greatest integer \leq x.
Suppose that a, b, c > 0 such that abc = 1. Prove that \frac{ab}{ab + a^5 + b^5} + \frac{bc}{bc + b^5 + c^5} + \frac{ca}{ca + c^5 + a^5} \leq 1.
Let a_1 \geq a_2 \geq \ldots \geq a_n be real numbers such that for all integers k > 0,

a^k_1 + a^k_2 + \ldots + a^k_n \geq 0.

Let p = max\{|a_1|, \ldots, |a_n|\}. Prove that p = a_1 and that

(x - a_1) \cdot (x - a_2) \cdots (x - a_n) \leq x^n - a^n_1 for all x > a_1.
Let a_{1}, a_{2}...a_{n} be non-negative reals, not all zero. Show that that
(a) The polynomial p(x) = x^{n} - a_{1}x^{n - 1} + ... - a_{n - 1}x - a_{n} has preceisely 1 positive real root R.
(b) let A = \sum_{i = 1}^n a_{i} and B = \sum_{i = 1}^n ia_{i}. Show that A^{A} \leq R^{B}.
Show that there exists a bijective function f: \mathbb{N}_{0}\to \mathbb{N}_{0} such that for all m,n\in \mathbb{N}_{0}:
f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n).
Let f be a non-constant function from the set of positive integers into the set of positive integer, such that a-b divides f\!\left(a\right)-f\!\left(b\right) for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides f\!\left(c\right) for some positive integer c.

Proposed by Juhan Aru, Estonia