« Vrati se
Let a_1\geq \cdots \geq a_n \geq a_{n + 1} = 0 be real numbers. Show that
\sqrt {\sum_{k = 1}^n a_k} \leq \sum_{k = 1}^n \sqrt k (\sqrt {a_k} - \sqrt {a_{k + 1}}).
Proposed by Romania

Slični zadaci

In an acute-angled triangle ABC, let AD,BE be altitudes and AP,BQ internal bisectors. Denote by I and O the incenter and the circumcentre of the triangle, respectively. Prove that the points D, E, and I are collinear if and only if the points P, Q, and O are collinear.
Find all pairs (a,b) of positive integers that satisfy the equation: a^{b^2} = b^a.
The altitudes through the vertices A,B,C of an acute-angled triangle ABC meet the opposite sides at D,E, F, respectively. The line through D parallel to EF meets the lines AC and AB at Q and R, respectively. The line EF meets BC at P. Prove that the circumcircle of the triangle PQR passes through the midpoint of BC.
Let ABC be a triangle. D is a point on the side (BC). The line AD meets the circumcircle again at X. P is the foot of the perpendicular from X to AB, and Q is the foot of the perpendicular from X to AC. Show that the line PQ is a tangent to the circle on diameter XD if and only if AB = AC.
Let x_1, x_2, \ldots, x_n be real numbers satisfying the conditions:
 |x_1 + x_2 + \dots + x_n| = 1 and |x_i| \leq \frac{n+1}{2}, for i = 1, 2, \dots, n
Show that there exists a permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that
| y_1 + 2 y_2 + \cdots + n y_n | \leq \frac {n + 1}{2}.
Does there exist functions f,g: \mathbb{R}\to\mathbb{R} such that f(g(x)) = x^2 and g(f(x)) = x^k for all real numbers x

a) if k = 3?

b) if k = 4?