« Vrati se
Let x_1, x_2, \ldots, x_n be real numbers satisfying the conditions:
 |x_1 + x_2 + \dots + x_n| = 1 and |x_i| \leq \frac{n+1}{2}, for i = 1, 2, \dots, n
Show that there exists a permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that
| y_1 + 2 y_2 + \cdots + n y_n | \leq \frac {n + 1}{2}.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1175IMO Shortlist 1964 problem 32
1423IMO Shortlist 1971 problem 103
1967IMO Shortlist 1997 problem 111
1969IMO Shortlist 1997 problem 132
1975IMO Shortlist 1997 problem 192
1982IMO Shortlist 1997 problem 260