« Vrati se
Let a_{1},a_{2},\ldots ,a_{n} be positive real numbers such that a_{1}+a_{2}+\cdots +a_{n}<1. Prove that

\frac{a_{1} a_{2} \cdots a_{n} \left[ 1 - (a_{1} + a_{2} + \cdots + a_{n}) \right] }{(a_{1} + a_{2} + \cdots + a_{n})( 1 - a_1)(1 - a_2) \cdots (1 - a_n)} \leqslant \frac{1}{n^{n+1}}

Slični zadaci

Neka je \{ F_i \}, i=0,1, \ldots niz brojeva definiran na sljedeći način:
 F_0=0, \  F_1=1,\  F_{i+2}=F_{i+1}+F_{i}, \ i=0,1, \ldots
Za prirodan broj n \geq 2 neka su a_0, a_1, \ldots a_n nenegativni brojevi koji zadovoljavaju uvjet
 a_0=1, \ a_i \leq a_{i+1} + a_{i+2}, \ i=0,1, \ldots, n-2.
Dokažite da je a_0+a_1+\ldots+a_n \geq \frac{F_{n+2}-1}{F_{n}}. Da li se postiže jednakost?
Let a, b, c be positive real numbers such that \dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c. Prove that:
\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}


Proposed by Juhan Aru, Estonia
Let S\subseteq\mathbb{R} be a set of real numbers. We say that a pair (f, g) of functions from S into S is a Spanish Couple on S, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. f(x) < f(y) and g(x) < g(y) for all x, y\in S with x < y;

(ii) The inequality f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right) holds for all x\in S.

Decide whether there exists a Spanish Couple on the set S = \mathbb{N} of positive integers; on the set S = \{a - \frac {1}{b}: a, b\in\mathbb{N}\}

Proposed by Hans Zantema, Netherlands
Prove the inequality:

\displaystyle \sum_{i < j}{\frac {a_{i}a_{j}}{a_{i} + a_{j}}}\leq \frac {n}{2(a_{1} + a_{2} + ... + a_{n})}\cdot \sum_{i < j}{a_{i}a_{j}}

for positive reals a_{1}, a_{2}, ..., a_{n}.
The sequence c_{0}, c_{1}, . . . , c_{n}, . . . is defined by c_{0}= 1, c_{1}= 0, and c_{n+2}= c_{n+1}+c_{n} for n \geq 0. Consider the set S of ordered pairs (x, y) for which there is a finite set J of positive integers such that x=\sum_{j \in J}{c_{j}}, y=\sum_{j \in J}{c_{j-1}}. Prove that there exist real numbers \alpha, \beta, and M with the following property: An ordered pair of nonnegative integers (x, y) satisfies the inequality m < \alpha x+\beta y < M if and only if (x, y) \in S.


Remark: A sum over the elements of the empty set is assumed to be 0.
Let a_0, a_1, a_2, \ldots be an arbitrary infinite sequence of positive numbers. Show that the inequality 1 + a_n > a_{n-1} \sqrt[n]{2} holds for infinitely many positive integers n.