Mala olimpijada 1998 zadatak 3


Kvaliteta:
  Avg: 0,0
Težina:
  Avg: 6,0
Neka je \{ F_i \}, i=0,1, \ldots niz brojeva definiran na sljedeći način:
 F_0=0, \  F_1=1,\  F_{i+2}=F_{i+1}+F_{i}, \ i=0,1, \ldots
Za prirodan broj n \geq 2 neka su a_0, a_1, \ldots a_n nenegativni brojevi koji zadovoljavaju uvjet
 a_0=1, \ a_i \leq a_{i+1} + a_{i+2}, \ i=0,1, \ldots, n-2.
Dokažite da je a_0+a_1+\ldots+a_n \geq \frac{F_{n+2}-1}{F_{n}}. Da li se postiže jednakost?
Izvor: Mala olimpijada 1998 zadatak 3