« Vrati se
Let n \geq 2 be a fixed integer. Find the least constant C such the inequality

\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C \left(\sum_{i}x_{i} \right)^4

holds for any x_{1}, \ldots ,x_{n} \geq 0 (the sum on the left consists of \binom{n}{2} summands). For this constant C, characterize the instances of equality.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1520IMO Shortlist 1978 problem 62
1983IMO Shortlist 1998 problem A112
2066IMO Shortlist 2001 problem A29
2265IMO Shortlist 2008 problem A213
2291IMO Shortlist 2009 problem A218
2293IMO Shortlist 2009 problem A410