« Vrati se
Let n \geq 2 be a fixed integer. Find the least constant C such the inequality

\sum_{i<j} x_{i}x_{j} \left(x^{2}_{i}+x^{2}_{j} \right) \leq C \left(\sum_{i}x_{i} \right)^4

holds for any x_{1}, \ldots ,x_{n} \geq 0 (the sum on the left consists of \binom{n}{2} summands). For this constant C, characterize the instances of equality.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
2293IMO Shortlist 2009 problem A410
2291IMO Shortlist 2009 problem A218
2265IMO Shortlist 2008 problem A213
2066IMO Shortlist 2001 problem A29
1983IMO Shortlist 1998 problem A112
1520IMO Shortlist 1978 problem 62