« Vrati se
Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

Slični zadaci

Find all triplets of positive integers (a,m,n) such that a^m + 1 \mid (a + 1)^n.
Denote by d(n) the number of divisors of the positive integer n. A positive integer n is called highly divisible if d(n) > d(m) for all positive integers m < n.
Two highly divisible integers m and n with m < n are called consecutive if there exists no highly divisible integer s satisfying m < s < n.

(a) Show that there are only finitely many pairs of consecutive highly divisible
integers of the form (a, b) with a\mid b.

(b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that pr is also highly divisible.
Let a, b be positive integers such that b^n+n is a multiple of a^n+n for all positive integers n. Prove that a=b.
Prove that the equation \frac {x^{7} - 1}{x - 1} = y^{5} - 1 doesn't have integer solutions!
Let a > b > 1 be relatively prime positive integers. Define the weight of an integer c, denoted by w(c) to be the minimal possible value of |x| + |y| taken over all pairs of integers x and y such that ax + by = c. An integer c is called a local champion if w(c) \geq w(c \pm a) and w(c) \geq w(c \pm b). Find all local champions and determine their number.
Let k be a positive integer. Show that if there exists a sequence a_0, a_1, ... of integers satisfying the condition a_n=\frac{a_{n-1}+n^k}{n} \text{,} \qquad \forall n \geqslant 1 \text{,} then k-2 is divisible by 3.

Proposed by Turkey