« Vrati se
Regard a plane with a Cartesian coordinate system; for each point with integer coordinates, draw a circular disk centered at this point and having the radius \frac{1}{1000}.

a) Prove the existence of an equilateral triangle whose vertices lie in the interior of different disks;

b) Show that every equilateral triangle whose vertices lie in the interior of different disks has a sidelength 96.

Radu Gologan, Romania
Remark
[The " 96" in (b) can be strengthened to " 124". By the way, part (a) of this problem is the place where I used the well-known "Dedekind" theorem.]

Slični zadaci

Let ABC be a triangle and P an exterior point in the plane of the triangle. Suppose the lines AP, BP, CP meet the sides BC, CA, AB (or extensions thereof) in D, E, F, respectively. Suppose further that the areas of triangles PBD, PCE, PAF are all equal. Prove that each of these areas is equal to the area of triangle ABC itself.
For any set S of five points in the plane, no three of which are collinear, let M(S) and m(S) denote the greatest and smallest areas, respectively, of triangles determined by three points from S. What is the minimum possible value of M(S)/m(S) ?
Let ABC be a triangle, and P a point in the interior of this triangle. Let D, E, F be the feet of the perpendiculars from the point P to the lines BC, CA, AB, respectively. Assume that

AP^{2}+PD^{2}=BP^{2}+PE^{2}=CP^{2}+PF^{2}.

Furthermore, let I_{a}, I_{b}, I_{c} be the excenters of triangle ABC. Show that the point P is the circumcenter of triangle I_{a}I_{b}I_{c}.
If a, b, c are the sides of a triangle, prove that
\sum_{\mbox{cyc}}\frac{\sqrt{a+b-c}}{\sqrt{a}+\sqrt{b}-\sqrt{c}}\leq 3
Determine the smallest positive real number k with the following property. Let ABCD be a convex quadrilateral, and let points A_1, B_1, C_1, and D_1 lie on sides AB, BC, CD, and DA, respectively. Consider the areas of triangles AA_1D_1, BB_1A_1, CC_1B_1 and DD_1C_1; let S be the sum of the two smallest ones, and let S_1 be the area of quadrilateral A_1B_1C_1D_1. Then we always have kS_1\ge S.

Author: unknown author, USA
Let the sides AD and BC of the quadrilateral ABCD (such that AB is not parallel to CD) intersect at point P. Points O_1 and O_2 are circumcenters and points H_1 and H_2 are orthocenters of triangles ABP and CDP, respectively. Denote the midpoints of segments O_1H_1 and O_2H_2 by E_1 and E_2, respectively. Prove that the perpendicular from E_1 on CD, the perpendicular from E_2 on AB and the lines H_1H_2 are concurrent.

Proposed by Ukraine