« Vrati se
Let n \geq 3 be an integer. Let t_1, t_2, ..., t_n be positive real numbers such that

n^2 + 1 > \left( t_1 + t_2 + ... + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + ... + \frac{1}{t_n} \right).

Show that t_i, t_j, t_k are side lengths of a triangle for all i, j, k with 1 \leq i < j < k \leq n.

Slični zadaci

#NaslovOznakeRj.KvalitetaTežina
1944IMO Shortlist 1996 problem G28
1995IMO Shortlist 1998 problem G18
2080IMO Shortlist 2001 problem G29
2132IMO Shortlist 2003 problem G122
2217IMO Shortlist 2006 problem G131
2305IMO Shortlist 2009 problem G117