IMO Shortlist 1996 problem G2


Kvaliteta:
  Avg: 4.0
Težina:
  Avg: 6.0
Dodao/la: arhiva
April 2, 2012
LaTeX PDF
Let P be a point inside a triangle ABC such that
\angle APB - \angle ACB = \angle APC - \angle ABC.
Let D, E be the incenters of triangles APB, APC, respectively. Show that the lines AP, BD, CE meet at a point.
Source: Međunarodna matematička olimpijada, shortlist 1996