« Vrati se
Let {a_1,a_2,\dots,a_n} be positive real numbers, {n>1}. Denote by g_n their geometric mean, and by A_1,\,A_2,\,\dots,\,A_n the sequence of arithmetic means defined by
A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n.
Let G_n be the geometric mean of A_1,A_2,\dots,A_n. Prove the inequality n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 and establish the cases of equality.

Slični zadaci

Let n be an integer,n \geq 3. Let x_1, x_2, \ldots, x_n be real numbers such that x_i < x_{i+1} for 1 \leq i \leq n - 1. Prove that

\frac{n(n-1)}{2}\sum_{i < j}x_{i}x_{j}>\left(\sum^{n-1}_{i=1}(n-i)\cdot x_{i}\right)\cdot\left(\sum^{n}_{j=2}(j-1)\cdot x_{j}\right)
Let x_1,x_2,\ldots,x_n be arbitrary real numbers. Prove the inequality

\frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}.
Prove the inequality:

\displaystyle \sum_{i < j}{\frac {a_{i}a_{j}}{a_{i} + a_{j}}}\leq \frac {n}{2(a_{1} + a_{2} + ... + a_{n})}\cdot \sum_{i < j}{a_{i}a_{j}}

for positive reals a_{1}, a_{2}, ..., a_{n}.
Let a_1, a_2, \ldots, a_{100} be nonnegative real numbers such that a^2_1 + a^2_2 + \ldots + a^2_{100} = 1. Prove that
a^2_1 \cdot a_2 + a^2_2 \cdot a_3 + \ldots + a^2_{100} \cdot a_1 < \frac {12}{25}.
Author: Marcin Kuzma, Poland
Let a, b, c, d be positive real numbers such that abcd = 1 and a + b + c + d > \dfrac{a}{b} + \dfrac{b}{c} + \dfrac{c}{d} + \dfrac{d}{a}. Prove that
a + b + c + d < \dfrac{b}{a} + \dfrac{c}{b} + \dfrac{d}{c} + \dfrac{a}{d}
Proposed by Pavel Novotný, Slovakia
Prove that for any four positive real numbers a, b, c, d the inequality
\frac {(a - b)(a - c)}{a + b + c} + \frac {(b - c)(b - d)}{b + c + d} + \frac {(c - d)(c - a)}{c + d + a} + \frac {(d - a)(d - b)}{d + a + b} \geqslant 0
holds. Determine all cases of equality.

Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany